Isoperimetric constants and the first eigenvalue of a compact riemannian manifold
نویسندگان
چکیده
منابع مشابه
Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملThe First Eigenvalue of the Laplacian, Isoperimetric Constants, and the Max Flow Min Cut Theorem
We show how ’test’ vector fields may be used to give lower bounds for the Cheeger constant of a Euclidean domain (or Riemannian manifold with boundary), and hence for the lowest eigenvalue of the Dirichlet Laplacian on the domain. Also, we show that a continuous version of the classical Max Flow Min Cut Theorem for networks implies that Cheeger’s constant may be obtained precisely from such vec...
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملRelative Isoperimetric Inequality for Minimal Submanifolds in a Riemannian Manifold
Let Σ be a domain on an m-dimensional minimal submanifold in the outside of a convex set C in S or H. The modified volume M Σ is introduced by Choe and Gulliver 1992 and we prove a sharp modified relative isoperimetric inequality for the domain Σ, 1/2 mωmM Σ m−1 ≤ Volume ∂Σ−∂C , where ωm is the volume of the unit ball of R. For any domain Σ on a minimal surface in the outside convex set C in an...
متن کاملThe first Dirichlet Eigenvalue of a Compact Manifold and the Yang Conjecture ∗
We give a new estimate on the lower bound of the first Dirichlet eigenvalue of a compact Riemannian manifold with negative lower bound of Ricci curvature and provide a solution for a conjecture of H. C. Yang.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales scientifiques de l'École normale supérieure
سال: 1975
ISSN: 0012-9593,1873-2151
DOI: 10.24033/asens.1299